第285章 庞加莱猜想与利克瑞尔数 (第2/4页)
亚多德那个老混蛋写一下回信的草稿。”
说完,大学者苏拉底拿起鹅毛笔,打开一个新的莎草纸卷轴,就开始“刷刷刷”的写起来。
半响,写的差不多了,苏拉底看着内容,又陷入沉思,对着李察道:“亚多德故意出难题为难我,虽然……咳,虽然并没有让我真的为难,但我也应该出一个差不多的难题回应他才好。
我倒是想到了好几个难题,不过都不太合适。那你有没有合适的题,最好是那种非常难解答出来的……”
“额……”李察眼睛闪了闪,念头飞转。
非常难解答出来的难题?那太多了,他一直想要知道的就是其中一个——这个世界的真相是什么,穿越的本质是什么?
除此外,很久之前测试《门罗之章》书灵,导致书灵至今没有反应的几个问题,也算——大统一理论、黎曼猜想、圆周率准确数值。
不过考虑到这些问题,他同样无法给出答案,还是换成比较几个简单点的比较好。比如……和黎曼猜想同属于现代地球世界七大数学难题之一的、但已经被成功解答的庞加莱猜想:
任一单连通的、封闭的三维流形与三维球面同胚。
简单来说,就是每一个没有破洞的封闭三维物体,都拓扑等价于三维的球面。
再简单来说,那就是如果一个苹果(或者其他球形水果)表面绑有橡皮筋,试着伸缩它,既不扯断,也不让它离开表面,可以让它慢慢移动收缩为一个点;但把这个橡皮筋以适当的方式绑在一个轮胎表面,在不拉扯橡皮筋的前提下,是没有办法把橡皮筋既不离开表面而又收缩到一点的。因此,苹果表面是“单连通的”,轮胎表面却不是。
李察正准备出声,话到嘴边却停住了,因为他突然想到关于拓扑学的东西,可能有点过于挑战面前大学者苏拉底的思维了。他如果真的说出来,很可能需要先把三维、流形、胚这种定义普及一下才行。
所以……还是换一个更简单的吧,最好是单纯的数
本章未完,点击下一页继续阅读。